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Abstract. In the context of higher-order J W K B  approximations for radial problems, the 
need for modifying the strength of the centrifugal barrier is considered. For spherically 
symmetric potentials V ( r )  satisfying the condition r2  V ( r )  --* 0 as r --* 0, it is shown how to 
determine the modification required in an arbitrary order n that will ensure that the 
nth-order J W K B  wavefunction has the correct behaviour ( - r ' + ' )  near the origin. The 
second-order modification of Beckel and Nakhleh is a special case of the proposed nth-order 
modification, as are those of Froman and Froman. It is demonstrated that, with the correct 
modification, the J W K B  series truncated at any order n leads to the exact energy spectrum 
for both the harmonic oscillator and the Coulomb potentials. 

1. Introduction 

A natural way of applying the J W K B  approximation to three-dimensional problems 
with spherical symmetry is to apply the one-dimensional JWKB formalism to the radial 
Schrodinger equation, treating the sum of the true potential and the centrifugal barrier 
term as the effective potential V,. Such a straightforward application entails certain 
difficulties which are not encountered in true one-dimensional problems (see Berry 
and Mount 1972 for details). For instance, the JWKB radial wavefunction has a 
behaviour near the origin r = 0 which is different from that of the exact wavefunction. 
This defect can be remedied if one treats the strength of the centrifugal term not as a 
fixed quantity Z(I + 1)  but as an adjustable parameter L2 whose value is to be chosen 
suitably. In the lowest order of approximation, L2 should be taken as ( I  +$)2, which 
then ensures that the corresponding J W K B  wavefunction goes like r'+' near r = 0. This 
replacement I ( I  + l ) +  ( I  +$)* is known as the Langer-Kemble modification (Langer 
1937, Kemble 1937). 

When one goes beyond the lowest order and includes higher-order corrections in 
a one-dimensional treatment with the potential Ve(r),  the difficulty at the origin surfaces 
again. The Langer-Kemble replacement which sufficed in the lowest order needs 
further modification. In fact, in different orders of approximation the parameter L2 
has to be chosen differently. In the second order, L2 has to be chosen to be the root 
of the equation x + 1/64x = 1(1 + 1). This was shown by Beckel and Nakhleh (1963) 
from an analysis of the differential equation obeyed by the second-order JWKB 

wavefunction. Later Froman and Froman (1974) included up to eighth-order terms in 
a different (phase integral) analysis of the problem, and showed that L2 must be taken 
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to be the root (that lies closest to I(1 + 1)) of the equations 

x4- I ( /  + 1)X3-2-9x +2-'4= 0, 

x8- I (  I + 
x6 - I (  I + I)x' - 5 ~ 2 - l ~ ~ ~  -2-I6x +2-20= 0, 

~ 2 - l ~ ~ ~ -  5 ~ 2 - ~ ~ ~  +25 x ~ - ~ O  =o, 
in the fourth, sixth and eighth orders of approximation respectively. The modifications 
necessary in still higher orders have not been reported in the literature. 

The main objective of this work is to show how the effective potential V, has to 
be modified in the nth-order JWKB approximation in order that the wavefunction 
vanishes as r'+l at the origin. With the modified effective potential, the one-dimensional 
formalism for higher-order corrections can be applied to radial problems in toto. By 
a simple analysis based on Dunham's formulation of the higher-order JWKB approxima- 
tions in one dimension (Dunham 1932), we determine the behaviour of $,wKe near 
the origin in any order of approximation. Requiring this to be / + I ,  we get an equation 
that determines the parameter L2. A gratifying consequence of this equation is that, 
when all orders are summed, L2 is identically equal to I ( / +  1). As a further check, we 
apply our result to the eigenvalue problems of the isotropic oscillator V ( r )  = $r2  and 
the Coulomb potential V ( r ) =  - l / r .  We show that, in both cases, the exact spectrum 
results, not only when all orders are summed, but also in any finite order of approxima- 
tion. This interesting fact explains why even the lowest-order approximation is exact 
for these potentials. 

2. Dunham's JWKB formalism and its radial generalisation 

We briefly summarise here the results of Dunham's analysis for one-dimensional 
potentials, and indicate how they can be adapted for radial problems. In his analysis 
Dunham takes the solution of the one-dimensional Schrodinger equation 

+" +(2m/h2)(€ - v(x))+ = o (2.1) 
in the form 

+ = e x p  (i/h) y d x  . ( I )  
The function y then satisfies the Riccati equation 

-ihy' = 2m(E - V) - y 2 .  

Expanding y as a power series in h (the JWKB series) 

cc 

Y =  C (-ih>"yn 
n = O  

and substituting in (2.3), one obtains 

y i  = 2 m ( ~  - v), 

2.~0yn + y ; - l +  y d n - m  =o, n z l  
n - l  

m = I  
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These relations determine all the y,'s recursivelyt. With the y,'s thus determined, (2 .2)  
provides an asymptotic series for the wavefunction which is valid away from the turning 
points. 

For potentials V(x) that have only two classical turning points with a single 
minimum lying in between, Dunham has obtained a quantisation formula for the 
energy eigenvalues in terms of the y,'s, which reads 

(-ih)"yn dx = 27rNh. (2 .7)  + 
Here the closed contour encloses a branch cut along the real axis between the two 
turning points which are branch points of yo and hence of y. The branch of yo chosen 
is that which is negative real on the upper lip of the cut, and the contour is traversed 
in the counterclockwise sense. N is a non-negative integer. 

To apply the above analysis to the radial equation, let us first assume that the true 
potential V(r) is such that r2V(r)+0 as r + O ,  and that the sum of V(r) and the 
centrifugal term has a single minimum and gives rise to two classical turning points 
corresponding to bound states. Typical potentials satisfying these conditions are 
V(r) = - l / r ,  r"(n = 1 , 2 , 3 , .  . .). Under these assumptions the radial problem is quite 
analogous to the one-dimensional one, except for the fact that the radial wavefunction 
is required to vanish as r '+ '  as r+O. For bound states, it also vanishes as r +  00. As 
noted in P I ,  the J W K B  radial wavefunction can be made to obey the boundary condition 
at the origin by treating the strength of the centrifugal term as an adjustable parameter 
L2 and choosing its value suitably. As will be shown below, the value of L2 depends 
on the order of approximation. Taking the effective potential therefore as 

V, = V ( r )  + . h ' ~ ~ / 2 m r ' ,  (2 .8)  

the one-dimensional formalism outlined above can be applied in toto, after replacing 
V(x) by V,(r). Thus the radial wavefunction is given by 

where 

y i = 2 m ( E  - Ve), 

the other y,'s being determined by (2 .6) .  The energy quantisation condition is still 
given by (2 .7) .  

3. Determination of L2 

As L2 is to be determined by the boundary condition at the origin, we need to know 
first of all how the JWKB wavefunction behaves near r = 0. For this purpose, we note 
that as long as r2 V( r) -+ 0 as r + 0, the leading rdependence in V, is governed by the 
centrifugal barrier term. Thus we find that 

yo+ -iL/r, r + O  (3 .1)  

t Some numerical studies on the structure of the JWKB series and the properties of the yn's have been camed 
out by Bender el a/ (1977). 
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(we take h = 1 and m = 1 for convenience). Substituting this in the recurrence relation 
(2.6), the behaviour of other y,’s near r = 0 can also be successively determined: 

y 2 +  -l /8iLr, .  . . . Yl  + + 1/2r, 

It is easy now to verify that, as r + 0, the ansatz 

y ,  + (-) ,( i /L)”-’ C , / r  (3.2) 

solves the recurrence relation (2.6), provided the coefficients C, obey the relation 
n 

-2Cn+t = Cn + C CmCn+,-m, rial. 
m = I  

The solution to this relation is given by 
c --I CO= 1, I - 2, 

C 2 n  +3 = 0,  n = 0 , 1 , 2 , . .  

Therefore, the behaviour of y near r = 0 is fully determined: 

y =  
n = O  

Substituting for CZn and formally summing the series, we get 

y+(- i / r ) [ t+L( l  + 1/4L2)”2]. (3.4) 

Putting this in (2.9), we see that near r = 0 the J W K B  wavefunction has the form 

U + r l ”  + L( 1 + l/4L2)’’2. (3.5) 

This shows that the true wavefunction and its J W K B  approximant will have the same 
rdependence near r = 0, if L is chosen to satisfy 

f + L(l + l /4L2)”2 = I + I ,  

L( 1 + 1/4Lz)”2 = I +;. 
i.e. 

We now briefly consider the implications of this equation. The solution is easily seen 
to be L 2 =  1(1+1). We thus have the gratifying result that the correct strength of the 
centrifugal barrier in the Schrodinger equation is reproduced, when the entire J W K B  

series is summed. On the other hand, it is also clear from the foregoing analysis that, 
if the series is truncated at a finite n, L2 will not be equal to I ( I  + 1). Nonetheless, the 
J W K B  wavefunction in any finite order can still be made to have the correct behaviour 
near r = 0 by choosing Lz properly. This necessarily implies that L2 is different in 
different orders. Formally expanding the square root in (3.6), we get the series 

L + i +  1/8L- l /128L3 +. . , = ( / +  I ) .  (3.7) 
If we keep only the first two terms, we get the Langer-Kemble modification L2 = ( I  +f)’, 
known to be correct in the lowest (zeroth plus first) order. Approximating the LHS of 
(3.7) as L +; + 1/8L we obtain the second-order result of Backel and Nakhleh quoted 
in § 1: L2 + 1/64L2 = I ( I  + I) .  The results of Froman and Froman for higher orders 
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quoted in 0 1 also follow from (3.7) when appropriate truncations of the series expansion 
are made. It may be noted that if the J W K B  series is truncated at the third order (n = 3), 
the value of L2 to be used will be the same as that for the second order. This is because 
C3 = 0 in (3.2). For similar reasons, the value of L2 appropriate to the (2n + 1)th order, 
for n >  1, will be the same as that for the 2nth order. The value of L2 for the 2nth 
order (with I? 2 1) will be determined by (3.7) in which the first (n +2) terms on the 
LHS alone are retained. Explicity, it is given by 

L + t + L  (-&)r(!) = / + I ,  n 2  1. 
r =  I  

4. Application to the harmonic oscillator and the Coulomb potentials 

We apply the results of the foregoing analysis to the harmonic oscillator and the 
Coulomb problems and show that when the value of L2 appropriate to any given order 
is used, the exact eigenvalues of these potentials are reproduced in that order. This 
provides a check on our formalism. 

The effective potential for the harmonic oscillator is 

V, = i r 2  + ~ ' / 2 r ~ .  

The energy is to be computed from the condition 
r 

27rn, = 2 (-i)"y, d r  = 2 (-i)"I,, f 
with 

yo  = - 1 2 ~  - r2 - L2/ r2>"*, 

the other y,'s being determined from (2.6). For this potential, it is easy to verify by 
induction that the following form for y ,  solves (2.6): 

where P = - ( - r4+2Er2-  L2)"2 and An,k are constants. Consider the integral 

I ,  = y ,  dr. I 
The integration contour encloses the branch cut from r ,  to r2,  where rI  and r2 are the 
positive roots of P=O. The other singularities of y ,  in the complex r-plane are a 
simple pole at r = O  and two branch points at -r l  and - r2 .  Therefore there is a 
symmetrical left-hand cut from - r2  to - r l .  The integral around the right-hand cut is 
equal to that around the left-hand cut. Therefore, by Cauchy's theorem, 

21, = -(27ri xresidue of y ,  at r = 0) + y ,  d r  
I C R  

where CR is a circle of radius R. Now, as R + w ,  the integral over CR tends to zero 
for all n > 1, because y ,  + 0 as lrl+ CO, as is clear from (4.2). The residue at the origin 
is simply the coefficient of l l r  in y ,  and is read from (3.2). Therefore 

21, = -27ri(-l)"(i/L)"-'cn. 
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Using the value of C, from (3.3), it follows then that for n > 0 

We are left with the integrals Z, and ZI, and these are easily evaluated to be n-(E - L )  
and --Ti respectively. Collecting all the terms, we have 

2n-n, = n-(E - L ) -  T- n-L 
n = l  

= n-[E - 1 - L(l + l / 4L2)"2] ,  

and therefore 

E = 2 n ,  + 1 + L(l + 1/4L2)1'2.  

Hence, it follows from (3.6) that when the correct L2 in any order is used, the exact 
spectrum results. 

For the Coulomb problem also a similar analysis can be carried out. For n S 1, 
the integral of yn is the same as that in the harmonic oscillator case. Only the integral 
I ,  has a different value, leading to the Coulomb spectrum. 

5. Discussion 

We have demonstrated that the one-dimensional J W K B  formalism can be applied in 
roto to radial problems for computing higher-order corrections, provided the strength 
of the centrifugal term is treated as a parameter L2. The value of L2 in any order of 
approximation is then fully determined by the boundary condition on the wavefunction 
at the origin. In the test cases of the harmonic oscillator and the hydrogen atom, our 
procedure leads to the known energy spectra in every order of approximation. That 
the J W K B  series can be summed is a special feature of these potentials. For a general 
potential V ( r ) ,  the singularity structure of y ,  in  the complex r-plane is quite complicated. 
For instance in the quartic oscillator case, V ( r )  = r4, in addition to right-hand and 
left-hand cuts along the real axis and a pole at r = 0, y ,  will have additional cuts along 
the imaginary axis. In a subsequent paper we shall show how, for the quartic oscillator 
case, one can calculate higher-order J W K B  integrals I, for n S 4 and obtain an expression 
for the energy eigenvalues. 

We conclude with a comment on the applicability of our analysis to S-waves. When 
1 = 0, the centrifugal term is absent in the radial Schrodinger equation, and there will 
be only one turning point, for potentials of the type discussed. This means that our 
analysis cannot be applied directly to S-waves. If one tries to apply the above analysis 
to S-waves by adding a fictitious term L 2 / r 2  to V ( r ) ,  and thereby generating a second 
turning point, there may arise difficulties. The observation of Beckel and Nakhleh that 
in second-order J W K B  the parameter L2 becomes imaginary for S-waves is an illustration. 
Similar difficulties may be present in higher orders. I t  is interesting to observe that if 
all orders of J W K B  are taken into account, the value of L2 to be chosen for the S-wave 
is the correct value zero. The corresponding S-wave energies will also be then repro- 
duced correctly, as illustrated in the harmonic oscillator and the hydrogen atom 
problems. For obtaining the energy eigenvalues specifically for S-waves, the works of 
Froman (1978) and Pasupathy and Singh (1981) may be consulted. 
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